#### Tall Wood

The Next 20 Years, The Next 20 Storeys

#### What Building Officials Need to Know

A copy of this presentation is available at: http://www.ghl.ca/shared/Tall\_Wood\_Presentation (BOABC Nov 2013).pdf

Andrew Harmsworth, MEng, PEng, CP Tim Ryce – City of North Vancouver

Email: ah@ghl.ca

Web: www.ghl.ca



### **Copyrights and Limitations**

GHL takes no responsibility for application of any concepts or interpretations in this presentation to specific projects unless specifically retained for that project.

This presentation is conceptual and intended to be presented by GHL.

These slides must not be considered complete or exhaustive.

This presentation is copyright GHL Consultants Ltd and others and all rights are reserved.



#### Who Am I?

Andrew Harmsworth, M Eng, P Eng, CP Principal, GHL Consultants Ltd

Email: ah@ghl.ca

BASc, Queen's University at Kingston, Civil Engineering

M Eng, UBC's short lived Fire Science program

25 years' experience in Equivalencies and Alternative Solutions



#### **GHL Consultants Ltd**

- Founded 20 years ago
- Building Code Consultants
- Fire Engineers
- Code reviews both assisting clients and as Authorities
- No system design won't sell you things you don't need



# About GHL

- "Code Consulting" firm
- Prefer "Fire Engineering"
  - Focus on Part 3
  - Fire hazard analysis
  - Fire risk analysis
  - Structural fire resistance
  - Heat transfer
  - Smoke control design



#### **GHL Staff**

- 6 Engineers 4 with Master's Degrees in Fire Science
- 1 Architect
- 2 former Building Officials
- 3 BCQ qualified Technologists (Qualified as Building Officials)



#### **Building Code Committee Work**

- APEG Building Codes Committee (Khash Vorell / Andrew Harmsworth)
- BC Appeal Board (Frankie Victor)



#### **Research Work**

- BC Wood First Advisory Committee to Forestry Investment Innovations
- CAN 086 Task Group on Fire (Andrew Harmsworth)
- NEWBuildS Research Network (Andrew Harmsworth, Board of Directors) – 40 Master's and PhD Students
- Fire Risk Assessment for Alternative Solutions (Gary Chen)
- Effectiveness of Sprinkler Systems after an Earthquake.



#### **Research Work**

- 6 Storey Group C (Residential) Code Change (Andrew Harmsworth / Gary Chen, 2009)
- Group D (Office) Studies 6 Storey Frame and 8 Storey Heavy Timber (HT)
- MSc Studies on Effects of Fire as a Structural Load (Gary Chen) - Current
- Lead Author, Tall Wood Guide with FP Innovations



#### 6 Storey Wood - 1871



#### Wikipedia



#### 9 Storey Heavy Timber - 1905





### Today







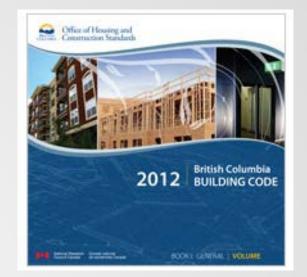
#### We Used to Know How to Do It



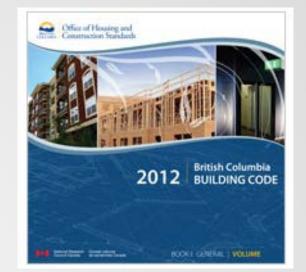


#### What Happened

- Greater concern with fire safety.
- National Building Code of 1941.
- Initially prefaces with the idea that it was a 'Guide'.
- Over time it became a restrictive document.




### The Building Code


It is a consensus document:

- It regulates construction of buildings.
- Traditionally written by NRCC (Constitution).
- The Province adopts it on the public's behalf.
- Code measures are public interest decisions.

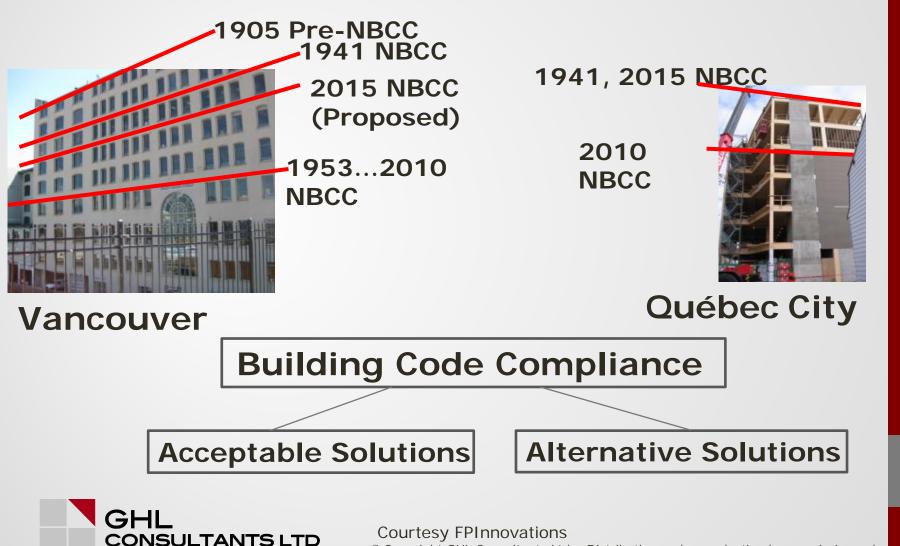




#### Risk



Buildings are subject to risks:


- Code compliance ≠ no risk.
- Code compliance = risks at acceptable level.

Entering a building is just like getting into a car, there is an acceptable level of risk.





#### **Codes and Mass Timber**



© Copyright GHL Consultants Ltd. Distribution and reproduction by permission only

### **History and Background**

Use of Combustible Construction

- Up to early 1900's
  - Regulated by insurance industry
  - 5 and 6 storey wood frame was common
  - 8 and 9 storey HT common
- NBCC 1941, introduced height and area limits
- NBCC 1965, 3 storey height limit
- BCBC 1973 (NBCC 1970), 3 storey
- BCBC 1992 (NBCC 1990), 4 storey
- BCBC 2006 (April 4, 2009), 6 storey height limit



#### **Thoughts on Codes**

- Code should not care what material you use.
- All materials and design methods should be required to meet the same performance level.
- Code should be based on science, not emotion.
- Designers and Owners should be able to choose the best material for the job.

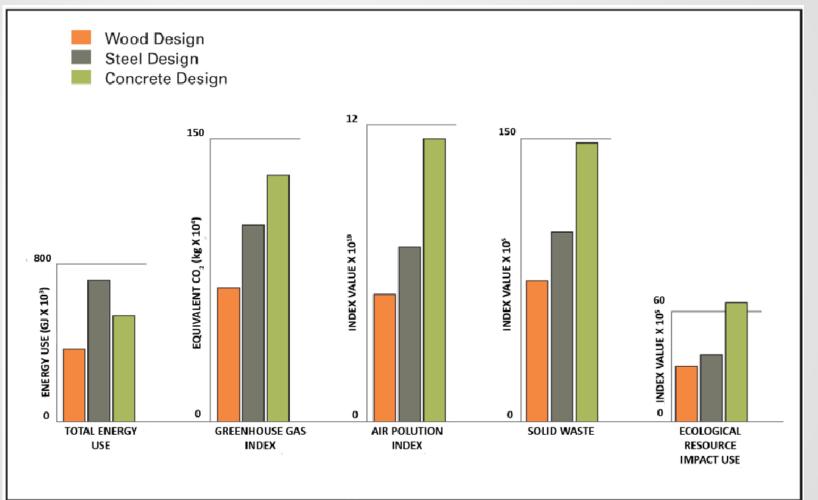


# **GHL** CONSULTANTS LTD

#### **New Concerns**

The Code should not prevent materials and methods that address concerns not addressed by the Code.




#### Why Wood?

Greenhouse gas concerns:

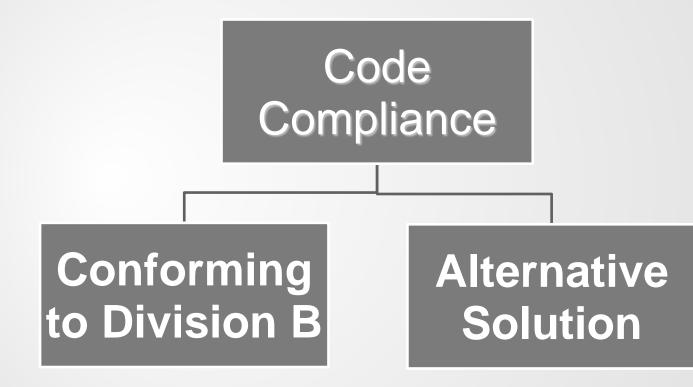
- Steel and concrete production produces large quantities of CO<sub>2</sub>.
- Wood production produces less CO<sub>2</sub>.
- Wood buildings sequester CO<sub>2</sub>.



#### **Environmental Impact of Structural Typologies**



GHL


CONSULTANTS LTD

#### 2005 – Objective Based

- Objective-based Code a fundamental change.
- Code provides solutions.
- Establishes objectives and functional statements.



#### **Objective Based Code**





## Risk

- Probability of Failure x Consequence of Failure
- Generally with fire:
  - Probability is very small
  - Consequence is very large
- Approach to address risk includes:
  - Minimize the probability
  - Minimize the consequence
  - Minimize both the probability and the consequence



#### Fundamental

Division B is only one solution.

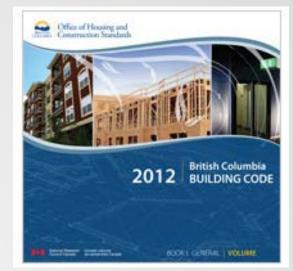
There can be other solutions.

# **GHL** CONSULTANTS LTD

#### **Level of Performance**

Limitation is that you must provide at least the level of performance that the Division B Solution provides.




#### **BC 6 Storey Residential**

GHL prepared the risk analysis.

Essentially an 'Alternative Solution' that was incorporated in the Code.

GHL argued that risks were equivalent to existing allowable building areas and heights if appropriate provisions were made.





#### **Peer Review and Consultation**

GHL's study on risks Peer Reviewed.

Public consultation.

Peer review.



#### Where Are We Now?

BC Code allows 6 Storey Residential, limited area.

Quebec interim changes.

NBC 2015 proposed changes to allow 6 storey wood frame published for comment.



#### **GHL Experience - 6 Storey**

Complex, requires good engineering.

Design team, Contractor's qualifications very important.

Definitely practical and safe.











#### **Construction Fires**







Laminated 2x6 elevator shaft





#### Mass Timber Terminology

Consensus is developing to use the term Mass Timber.

(Massive lost out - too late)

Avoids confusion with the specified sizes for Heavy Timber in Division B.



#### Mass Timber Fire Resistance

Two methods:

- Encapsulation
- Char



#### Tall Wood Guide

FPInnovations project funded by NRCan

- 400 Pages.
- 70 on Fire
- Fire Section first to provide comprehensive review of fire issues in tall wood buildings.
- Still a lot of work, but a team of authors and reviewers conclude it can be done.



#### Approach Chosen

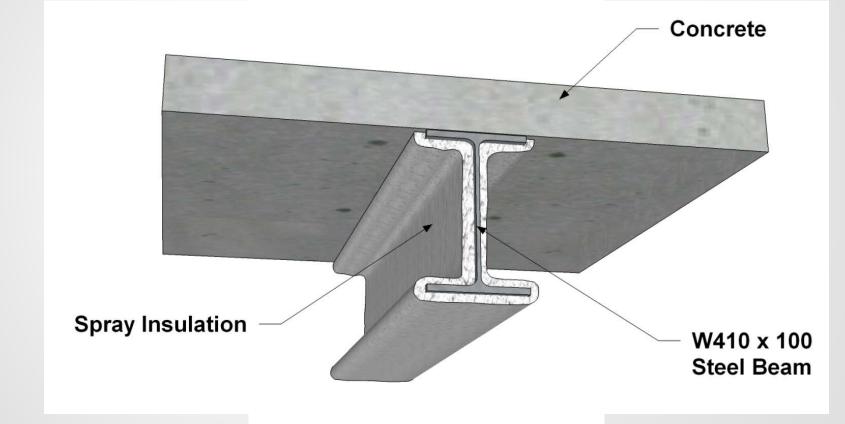
- Intent was to demonstrate that it CAN BE DONE.
- Nationally acceptable Risk Tolerance.
- Took a conservative approach.
- Recommends that an approach of encapsulation of combustibles:



#### Possible Approaches -

- Full Performance based assessment
  - Lack of performance criteria / inconsistent benchmarks
  - Time consuming
- Extend permitted combustible construction based on Comparative Risk Analysis
  - WIDC
  - BC 6 Storey
- Equivalent Component Performance
  - Protect components for equivalent performance



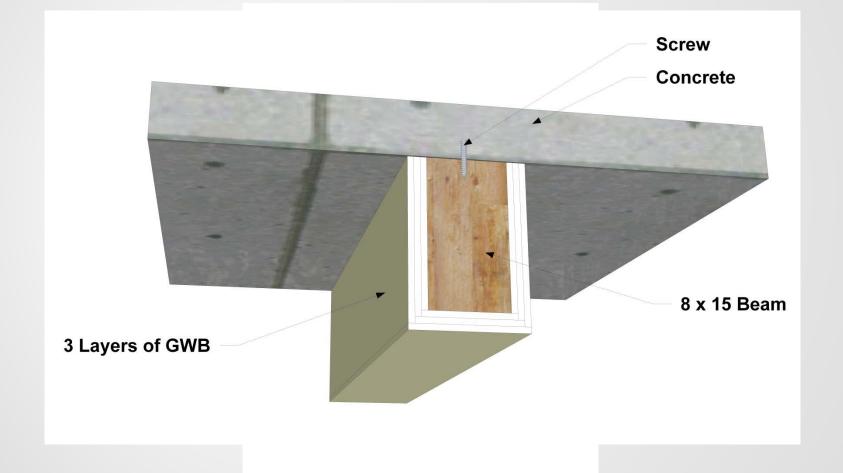

#### © Copyright GHL Consultants Ltd. Distribution and reproduction by permission only.

**GHL** CONSULTANTS LTD

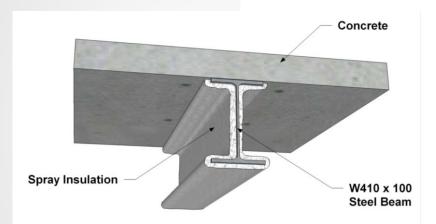
## Encapsulation

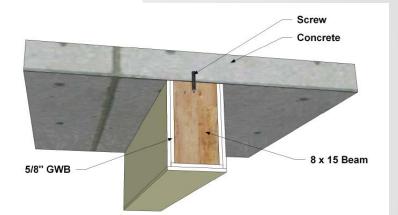
GHL

CONSULTANTS LTD




**GHL** CONSULTANTS LTD


# Encapsulation


GHL

CONSULTANTS LTD



## What is the Difference

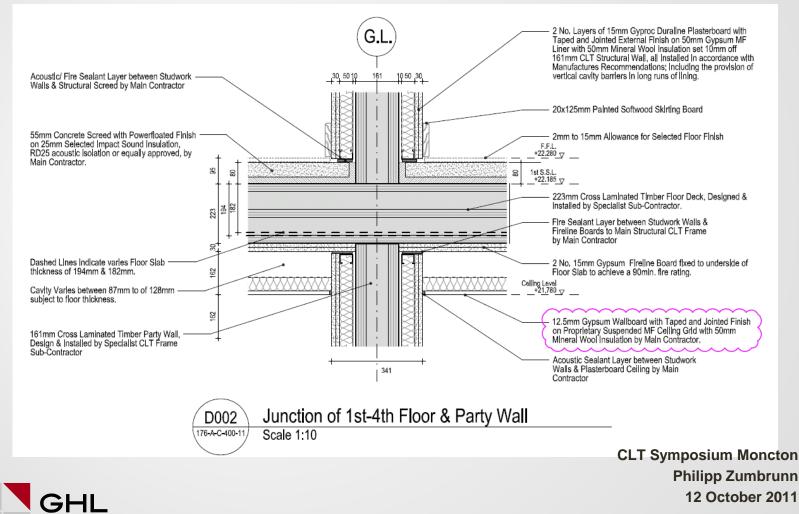






#### **Complete Encapsulation**

- Wood not affected by the fire for expected duration.
- Wood does not contribute to the fire for expected duration.
- 4 layers of ½in GWB.
- Makes the point that it CAN BE DONE.




#### Fire Resistance Rating of Gypsum Board Membranes

| Gypsum Board Members              | Fire Resistance Rating |
|-----------------------------------|------------------------|
| One layer of 12.7mm (½in) GWB     | 15min                  |
| One layer of 15.9mm (≸in) GWB     | 30min                  |
| Two layers of 12.7mm (½in) GWB    | 40min                  |
| Two layers of 15.9mm (⁵₅in) GWB   | 60min                  |
| Three layers of 15.9mm (⁵sin) GWB | 90min                  |
| Four layers of 15.9mm (%in) GWB   | 120min                 |



# UK Early Example – Bridport House



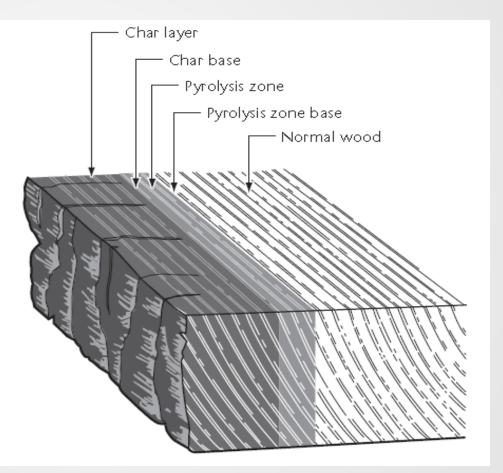
CONSULTANTS LTD

#### Peel Off the Layers

Then, suggested we peel off the layers.

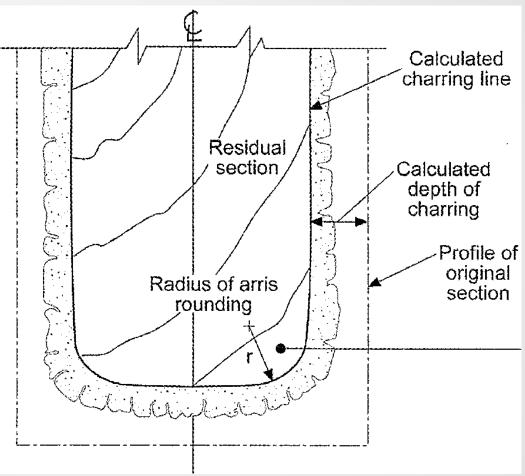


#### Char $\rightarrow$ Fire Resistance








#### Char Layer – Small-Scale Flame Test





## Concept of Mass Timber Design for Fire Resistance





#### Size of Members

Upsize of members for fire.

But this refers to critical collapse loads only.

Often performance governs (vibration, deflection).

Members may not need to increase in size.



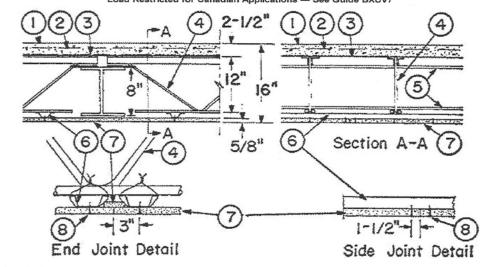
#### What has greater risk?



#### 2h Noncombustible

BXUV.G512 - Fire Resistance Ratings - ANSI/UL 263

http://database.ul.com/cgi-bin/ulweb/LISEXT/1FRAME/FireResistanceWizard.html


Fire Resistance Ratings - ANSI/UL 263

See General Information for Fire Resistance Ratings - ANSI/UL 263

Design No. G512

February 18, 2010

Restrained Assembly Rating — 3 Hr. Unrestrained Assembly Rating — 3 Hr. Unrestrained Beam Rating — 3 Hr. Load Restricted for Canadian Applications — See Guide BXUV7



Beam - W8x35, min size.



GHL CONSULTANTS LTD 55

4/27/11 1:26 PM

#### This, especially if wrapped in 2 layers of GWB





#### Comparison

Code refers to comparison of level of performance of the Alternative Solution.

Useful to look at an acceptable solution for Earth Sciences Building compared to the proposed solution.



**Risk Analysis** 

Another approach.

UBC Earth Sciences Building.



# 5 Storey A-2 Occupancy UBC Earth Sciences Building

Acceptable solution for A-2 occupancies:

- Ih noncombustible construction
- Alternative solution to address 1h mass timber







#### Approach

#### **Risk Analysis**

**Pre-Flashover** 

**Post-Flashover** 



#### Pre - Flashover

95% sprinkler reliability.

Only necessary to address 5% probability.

Low occupant load, extra fire separations.

















#### **Peer Reviewed**

GHL was the proponent.

Gage-Babcock & Associates Ltd was the reviewer.

All large UBC buildings done by peer review.



67

#### Mass Timber vs Steel

Wood

Expensive to protect. Highly reliable. Reproducible results. Contributes Fire Load

Steel

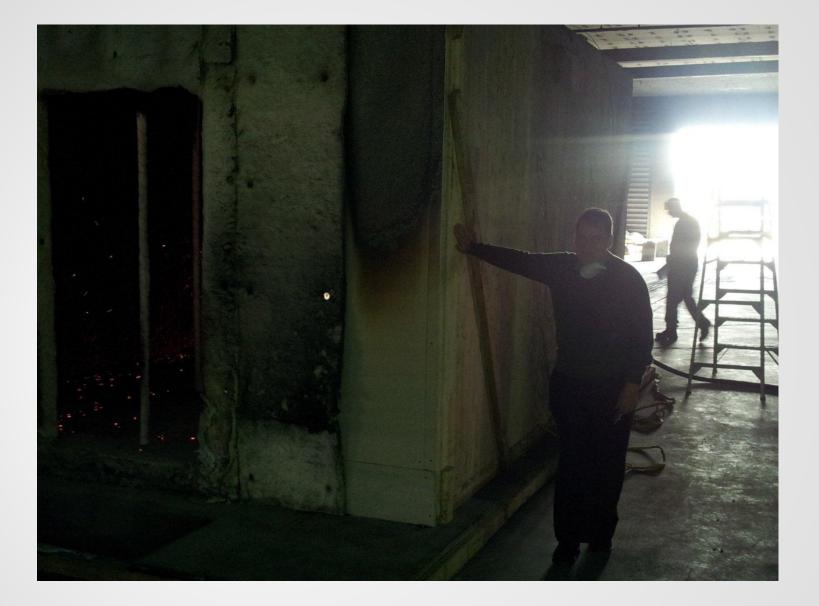
Cheap to protect. How reliable? How reproducible are the results? Burns Out



#### Concrete

Concrete

Agreed generally more fire safe than mass timber. Are fire rating designs and cover still applicable? Is 1/2in of cover acceptable per IBC? Spalling is unpredictable.


Concrete – how do you repair it - \$30B loss in NZ



#### **Firefighting Considerations**

- If Sprinklered no difference from sprinklered nc building
- Encapsulation == encapsulated steel
- Performance in the first half hour will be the same as concrete or steel building of the same design.
- Evacuation the same.
- Difference may be cleanup, as mass timber may continue to burn and char.
- Difference If the sprinklers fail, longer cleanup







#### Connections

Not specifically addressed for Steel or Concrete

Especially intumescent – problems noted



#### We Used to Know How to Do It





#### Protected Connections for Enhanced Fire Performance



b) Connection covered with wood paneling



#### **Protected Connections for Enhanced Fire Performance**



a) Fire-resistance test conducted on concealed plate (credit: L. Peng (Peng, Hadjisophocleous, Mehaffey, & Mohammad, 2010))



© Copyright GHL Consultants Ltd. Distribution and reproduction by permission only.

#### Intumescent Paint

Most Tested on Steel Beams – no movement or cracking

Effectiveness on connections, steel or wood is not known







#### Issues

A few issues that came up worth discussing.



GHL CONSULTANTS LTD

Performance targets not clear.

Why 2h FRR?

Why does ULC S101 only require 1 test?

Is criteria set by residential 1h compartment rating?



# **Sprinkler Reliability**

To what degree can we rely on sprinklers?

Consensus of authors:

- On site water supply needed.

Addresses – seismic concerns:

- Fire after 2h?

US data confirms that sprinklers are 90% reliable; Canadian data, if monitored and supervised, reliability is much higher.

In my opinion, a fully sprinklered 2h combustible building can meet risk fully exposed, but not politically saleable in most areas.



# Seismic

"An internal report of the City of Vancouver concludes that, at present, an M-7 earthquake would render the Greater Vancouver Water District supply system completely dysfunctional with 1000 water main breaks and 1000 service breaks." (Robertson 2000)

**Conclusion: - We need an on site water supply** 

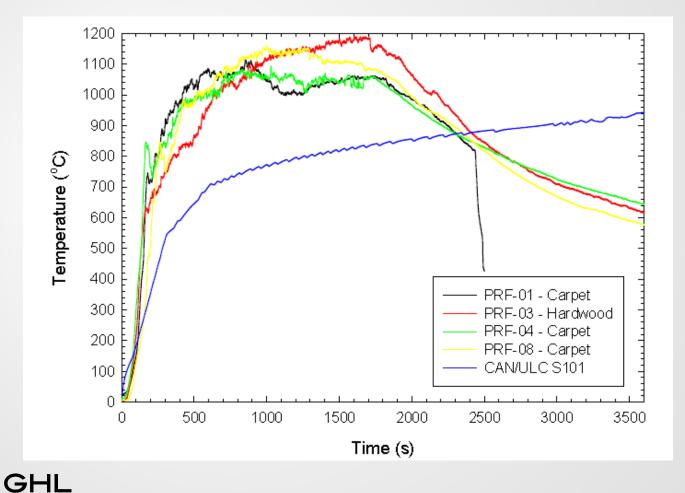


#### **Design Fire**

Is the standard fire acceptable, or do we need to look at real fires?

#### **Conclusion:**

- Office, Residential Occupancies standard fire is acceptable.
- High hazard, should probably assess real fires.


Note if using reduced load, must use 'natural fire'.



# **GHL** CONSULTANTS LTD

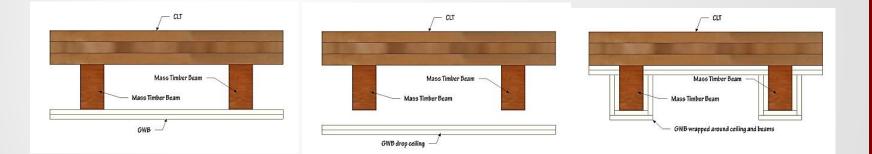
#### Standard Fire vs. Design Fire Scenarios

CONSULTANTS LTD



#### **Void Spaces**

Limited but they will occur.


How big a void space is acceptable?

Unsprinklered (NFPA 13 provisions applicable).

- Sprinklered?



#### Approaches to Encapsulation Creating Concealed Spaces



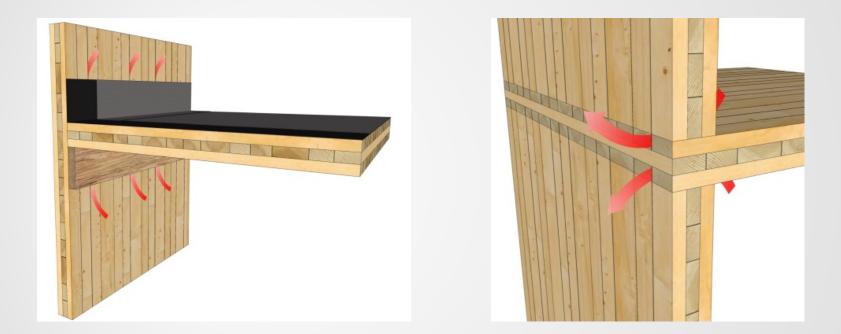


#### Mass Timber within Occupied Spaces

Mass Timber typically FSR 40 to 50

- Wall and ceiling finishes up to 25 mm in thickness;
- Floor finishes of any thickness;
- Solid wood partitions that are not a part of floor to floor separations or exit separations;
- Light wood framing in partitions that are not a part of floor to floor separations or exit separations.




#### Firestopping

Don't see a lot of issues.

Some public testing being done for WIDC.

But, be careful:

#### **CLT Smoke Leakage Paths**





#### Fire Tests not so bad





#### Results to come



# **GHL** CONSULTANTS LTD

#### **Exterior Cladding**

Unlikely to be fully exposed.

Code has a nice performance Standard for this, just needs to be applied to the whole wall assembly.



#### Cladding





## What Was Accomplished

Various reports out there on tall wood.

Limited review of fire issues, many said very little.

Green/Kharsh/Triggs – some more detail and a lot of effort on detailing to address approach – good first step but needed a lot more detail.

First full summary of all the fire issues.



## **European Example**

8 Storey Residential in London.

Eurban / CarbonEng, A Design Build Contractor with CLT.

Courtesy of Philipp Zumbrunnen.





### **Bridport House**

CLT Symposium Moncton Philipp Zumbrunn 12 October 2011





# Bridport House / Facts

- 7 weeks design period
- 10 weeks fabrication prior to start on site
- 12 weeks installation
- CLT Panels 1576m<sup>3</sup>
- Steel Elements 1520kg
- 30 CLT deliveries



CLT Symposium Moncton Philipp Zumbrunn 12 October 2011





# **Bridport House / The Installation**







# **Developments in Canada**

NEWBuildS - Network for Engineered Wood-based Building Systems.

CAN/CSA O86 Task Group on Wood Fire Ratings.

NRC/CWC Research consortium on higher wood buildings.

FP Innovations CLT Development.

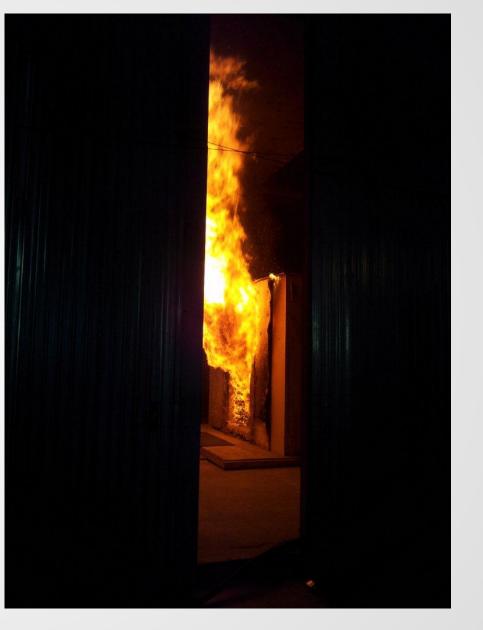
National Code Process.



97

# NEWBuildS

NEWBuildS - Network for Engineered Wood-Based Building Systems:


- History of the Code studies
- Fire Tests of CLT rooms
- Hybrid Construction (Steel/Wood and Concrete/Wood)



## **NEWBuildS**



# NEWBuildS





### NEWBuildS





Research consortium on higher wood buildings:

- Looking at 6 storey combustible frame construction.
- Learned group similar to Code Committee.
- Comparative performance testing (fire and sound).











#### Fire Test Fuel





#### LWF Start of Test



#### **CLT Start of Test**





#### **LWF** Fire Test



#### **CLT Fire Test**





LWF









Steel



# The Future

My opinion:

- 6 storey is probably the practical limit for wood frame.
- 8 storey with prefab quality control.
- No significant limit on area for wood frame.
- Structures will set limit on height for Heavy Timber.
- Hybrid buildings of unlimited height and area.



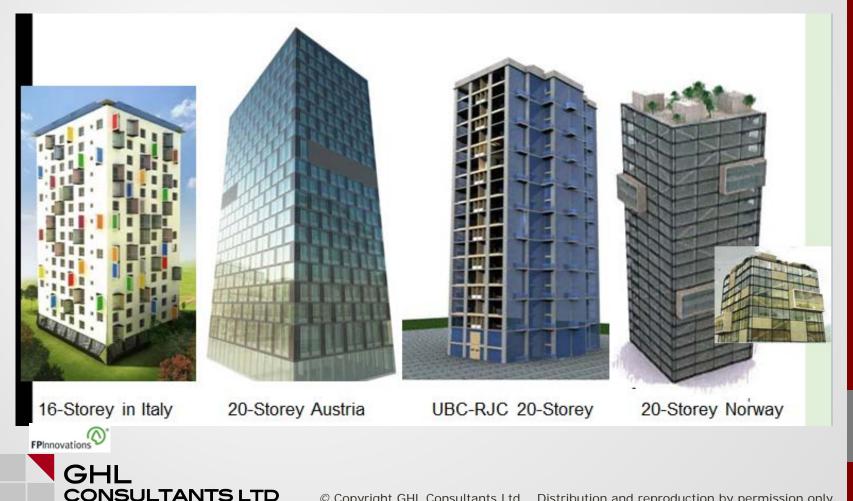




#### © Copyright GHL Consultants Ltd. Distribution and reproduction by permission only.



## Wood Construction


**Courtesy FPInnovations** 

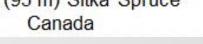
110



CONSULTANTS LTD

#### **Conceptually, How High Can We** Go With Wood? **Courtesy FPInnovations**




© Copyright GHL Consultants Ltd. Distribution and reproduction by permission only.

312 ft. (95 m) Sitka Spruce Canada



Green-Karsh 30-storey ~ 80m

36 storey ~ (95 m) Switzerland



112



FPInnovations

# **Useful Links**

- GHL CONSULTANTS LTD: <u>www.ghl.ca</u> Tall Wood Presentation: <u>http://www.ghl.ca/shared/Tall Wood Presentation.pdf</u>
- Woodworks! National: <u>ww.woodworks.org/index.php?option=com\_content&view=featured&Itemid=112</u>
- Woodworks! Alberta: <u>www.wood-works.org/index.php?option=com\_sobipro&sid=61:Wood-WORKS-Alberta&Itemid=228</u>
- Woodworks! BC: www.wood-works.org/index.php?option=com\_sobipro&sid=61:Wood-WORKS-Alberta&Itemid=228
- Canadian Wood Council: Mid-Rise Construction in BC: <u>http://www.cwc.ca/documents/case\_studies/Mid-Rise-Construction-in-BC.pdf</u>
- <u>44</u>
- Canadian Wood Council: Innovating with Wood: <u>http://www.cwc.ca/documents/case\_studies/Four%20demonstration%20Case%20Study\_May\_30.pdf</u>
- Technical Guide for the Design and Construction of Tall Wood Buildings in Canada: <u>http://ghl.ca/shared/Tall Wood Building Technical Guide.pdf</u>



# Questions?



# Thank you

A copy of this presentation is available at: <u>http://www.ghl.ca/shared/Tall\_Wood\_Presentation.pdf</u>

#### **GHL Consultants Ltd**

Suite 950 – 409 Granville Street Vancouver, BC V6C 1T2

Phone: (604) 689-4449 Fax: (604) 689-4419 Email: <u>ah@ghl.ca</u> Web: <u>www.ghl.ca</u>

